Nous utilisons des cookies pour vous proposer des contenus et services adaptés. En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies.
Ce site respecte la loi RGPD du 25 mai 2018. Pour en savoir plus, cliquez ici

Algèbre linéaire
Réduction des endomorphismes

Algèbre linéaire-vuibert-9782311404050
Algèbre linéaire 


Editeur : VUIBERT

Année : 06/2016 (2ème édition)
Après de nombreux rappels sur les fondements de la théorie de la dimension, du rang et des systèmes linéaires, qui sont au coeur de l'enseignement de l'Algèbre linéaire de L1 ou de Math Sup, le livre procède très vite à la mise en place des méthodes et des objets fondamentaux de la réduction des endomorphismes.
Chaque énoncé d'exercice, accompagné d'un rappel de cours, est l'occasion d'en présenter la thématique qui le replace dans un contexte mathématique signifiant (et non pas déconnecté de l'apprentissage). Les auteurs en proposent un éclairage multiple, et livrent une (ou plusieurs) solution(s) ainsi que divers développements apparentés.
Reliure : Broché
Nbr de pages : 194
Dimension : 16,9 cm × 24,0 cm × 1,2 cm
Poids : 334 gr
ISBN 10 : 2311404059
ISBN 13 : 9782311404050
21,00 €
Sur commande , expédition sous 4 à 8 jours (en savoir plus)
Avis clients sur Algèbre linéaire - vuibert -
(Tous les avis sont modérés par nos soins et rédigés par des clients ayant acheté l'ouvrage)
Donnez votre avis
Table des matières


1.
Polynômes d'endomorphismes
1.
Un morphisme d'algèbre .... 1

2.
Idéal des polynômes annulateurs 2

3.
Polynôme minimal . 4

4.
Utilisation pratique d'un polynôme annulateur 5

5.
Commentaires et développements 7

6.Exercices ........ . 9

II.
Sous-espaces stables
1.
Restriction d'un endomorphisme . 13

2.
Sous-espace stable . 15

3.
Endomorphisme induit sur un sous-espace stable. 16

4.
Exemples de sous-espaces stables. 16

5.
Sous-espaces cycliques . . . . . . . 17

6.
Commentaires et développements 18

7.
Exercices . 20

III.
Commutation
1.
Définitions . 25

2.
Calculs de commutants 27

3.
Endomorphisme adf .. 28

4.
Commentaires et développements 29

5.Exercices .............. 30

IV.
Lemme des noyaux
1.
Étude de ker PU) .................. 37

2.
Lemme des noyaux . 38

3.
Décomposition de l'espace en sous-espaces stables 40

4.
Commentaires et développements . . . . . . . . . 41

5.
Exercices .1~
V.
Éléments propres, caractéristiques
1.
Définitions . . . . . 45

2.
Polynôme caractéristique . 48

3.
Commentaires et développements 50

4.
Exercices . 53

VI.
Endomorphismes cycliques
1.Définitions .................. 59

2.
Caractérisation avec le polynôme minimal. 60

3.
Caractérisation avec le commutant. 60

4.
Matrice compagnon . . . . . . .. 62

5.
Polynôme caractéristique . . . . . 64

6.
Commentaires et développements 65

7.
Exercices . 67

VII.
Théorème de Cayley & Hamilton
1.
Énoncé et conséquences . 71

2.
Preuve par les sous-espaces cycliques 72

3.
Preuve par la formule de la comatrice 72

4.
Sous-espaces caractéristiques . . . 73

5.
Multiplicités . 73

6.
Commentaires et développements 74

7.
Exercices . 75

VIII.
Diagonalisation
1.
Critères de diagonalisation 79

2.
Critère de co-diagonalisation ... 84

3.
Commentaires et développements 85

4.
Exercices . 86

IX.
Trigonalisation
1.
Critères de trigonalisation . 93

2.
Fonctions symétriques des valeurs propres. 95

3.
Commentaires et développements 99

4.Exercices .............. 100

X.
Réduction de Jordan
1.
Décomposition de Jordan & Dunford 105

2.
Réduction de Jordan: cas nilpotent 107

3.
Interlude: lire un tableau de Young 113

4.
Réduction de Jordan; cas général 114

5.
Commentaires et développements 115

6.Exercices .............. 117

XI.
Réduction de Frobenius
1.
Réduction de Frobenius . 125

2.
Retour sur la réduction de Jordan 128

3.
Commutants et bicommutants .. 131

4.
Commentaires et développements 134

5.Exercices .............. 135

XII.
Topologie des classes de similitude
1.
Rappels sur la relation de similitude . 139

2.
Classes de similitude dans M2(~) .. 140

3.
Adhérence d'une classe de similitude. 144

4.
Connexité d'une classe de similitude 146

5.
Commentaires et développements 147

6.
Exercices . 148

XIII.
Localisation des valeurs propres
1.
Théorème de Hadamard . 153

2.
Disques de Gerschgorin 154

3.Rayon spectral...... 156

4.
Théorème de Perron ... 157

5.
Théorème de Perron & Frobenius 159

6.
Commentaires et développements 161

7.Exercices .............. 163

XIV.
Application aux chaînes de Markov finies
1.
Chaînes de Markov . 169

2.
Matrice de transition 170

3.
Probabilité invariante 173

4.
Théorème ergodique. 174

5.
Commentaires et développements 176

6.
Exercices . 178

Notations 181

Index 182


ANCIENNE EDITION

Algèbre linéaire
Réduction des endomorphismes
Editeur : VUIBERT
Année : 09/2012

Rubriques associées pour Algèbre linéaire :