

Sous la direction de Daniel Richard Professeur d'université, retraité

# LE COURS DE

# BIOLOGIE

## **LICENCE / CAPES / PRÉPAS**



Patrick Chevalet

Maître de conférences à l'INSPE (Toulouse)

Sylvie Fournel

Professeure à l'université de Strasbourg

Nathalie Giraud

Professeure agrégée à l'INSPE (Toulouse)

Frédéric Gros

Maître de conférences à l'université de Strasbourg

Christine Joly-Viard

Professeure au lycée Georges de la Tour à Metz

Patrick Laurenti

Maître de conférences à l'université Paris Diderot

Fabienne Pradère

Professeure agrégée à l'INSPE (Toulouse)

Thierry Soubaya

Professeur agrégé en classes préparatoires BCPST

### DUNOD

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1<sup>er</sup> juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour



droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).



#### © Dunod, 2010, 2012, 2015, 2018, 2022 11, rue Paul Bert, 92240 Malakoff www.dunod.com ISBN 978-2-10-083407-5

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

# Table des matières

| AVANT-P            | ROPOS                                                                 | XII      |  |
|--------------------|-----------------------------------------------------------------------|----------|--|
| Commen             | COMMENT UTILISER CET OUVRAGE                                          |          |  |
| <b>A</b> BRÉVIAT   | Abréviations                                                          |          |  |
| REMERCIE           | MENTS                                                                 | XVII     |  |
|                    | Partie 1 L'organisation des systèmes biologiques                      |          |  |
| 6                  | , , , , , , , , , , , , , , , , , , , ,                               |          |  |
|                    | 1 L'ORGANISATION DES CELLULES DU VIVANT                               | 3        |  |
| Fiche 1            | L'unité du vivant                                                     | 4        |  |
| Fiche 2            | La cellule bactérienne                                                | 7        |  |
| Fiche 3            | La cellule des Archées                                                | 9        |  |
| Fiche 4            | La cellule animale                                                    | 11       |  |
| Fiche 5            | La cellule végétale                                                   | 13       |  |
| Fiche 6<br>Fiche 7 | La membrane plasmique  Membranes et compartimentation intracellulaire | 15<br>22 |  |
| Fiche 8            | Le cytosquelette                                                      | 24       |  |
| Fiche 9            | Les mitochondries                                                     | 28       |  |
| Fiche 10           | Les plastes                                                           | 30       |  |
| Fiche 11           | Le noyau des cellules eucaryotes                                      | 32       |  |
| Focus              | Les virus                                                             | 34       |  |
| QCM                |                                                                       | 35       |  |
| CHAPITRE           | 2 L'ORGANISATION SUPRA-CELLULAIRE DU VIVANT                           | 37       |  |
| Fiche 12           | La diversité des tissus des Eumétazoaires                             | 38       |  |
| Fiche 13           | La diversité des tissus des Angiospermes                              | 42       |  |
| Fiche 14           | Les tissus méristématiques des Embryophytes                           | 46       |  |
| Fiche 15           | Adhésion et communication intercellulaire                             | 48       |  |
| Fiche 16           | Les matrices extracellulaires                                         | 52       |  |
| Focus              | Les voies symplasmique et apoplasmique                                | 58       |  |
| QCM                |                                                                       | 59       |  |
| CHAPITRE           | 3 ÉVOLUTION ET DIVERSITÉ DES ÊTRES VIVANTS                            | 61       |  |
| Fiche 17           | L'évolution, théorie unificatrice de la biologie                      | 62       |  |
| Fiche 18           | Hérédité et évolution                                                 | 64       |  |
| Fiche 19           | Histoire évolutive du vivant, quelques repères                        | 70       |  |
| Fiche 20           | La classification phylogénétique du vivant                            | 74       |  |
| Fiche 21           | Eucaryotes, Bicontes et Unicontes                                     | 80       |  |
| Fiche 22           | Les Chloroplastidés                                                   | 82       |  |
| Fiche 23           | Les Embryophytes                                                      | 84       |  |
| Fiche 24           | Les Fougères (sensu lato)                                             | 85       |  |
| Eicho 25           | Los Pinalos                                                           | 0.0      |  |

| Fiche 26 | Les Angiospermes                                          | 91  |
|----------|-----------------------------------------------------------|-----|
| Fiche 27 | Les Eumycètes                                             | 94  |
| Fiche 28 | Les Métazoaires                                           | 97  |
| Fiche 29 | Les Eumétazoaires                                         | 100 |
| Fiche 30 | Les Bilatéraliens                                         | 103 |
| Fiche 31 | Les Mollusques                                            | 107 |
| Fiche 32 | Les Euarthropodes                                         | 110 |
| Fiche 33 | Les Chordés                                               | 113 |
| Fiche 34 | Les Sarcoptérygiens                                       | 116 |
| Focus    | Les « blobs », des Eucaryotes particuliers ?              | 120 |
| QCM      |                                                           | 121 |
|          | Partie 2 Information génétique                            |     |
| CHAPITRE | 4 L'ADN: STABILITÉ ET VARIABILITÉ                         | 125 |
| Fiche 35 | L'information génétique                                   | 126 |
| Fiche 36 | La réplication de l'ADN                                   | 130 |
| Fiche 37 | Mutations et variabilité génétique                        | 136 |
| Fiche 38 | Les systèmes de réparation de l'ADN                       | 142 |
| Focus    | Mise en évidence du rôle de l'ADN                         |     |
|          | en tant que support de l'information génétique            | 146 |
| QCM      |                                                           | 147 |
| CHAPITRE | 5 L'expression de l'information génétique et son contrôle | 149 |
| Fiche 39 | L'expression de l'information génétique                   | 150 |
| Fiche 40 | Contrôle de l'expression des gènes chez les Bactéries     | 158 |
| Fiche 41 | Le contrôle de l'expression des gènes                     |     |
|          | chez les Eucaryotes                                       | 160 |
| Fiche 42 | Maturation et adressage des protéines                     | 166 |
| Focus    | Transcriptome et protéome, une nouvelle approche          | 170 |
| OCM      | pour étudier l'expression des gènes                       | 170 |
| QCM      |                                                           | 171 |
| CHAPITRE | 6 Les techniques de génétique moléculaire                 | 173 |
| Fiche 43 | La caractérisation d'un gène                              | 174 |
| Fiche 44 | Les techniques d'étude et de modification de l'ADN        | 176 |
| Fiche 45 | Exemples d'applications du génie génétique                | 180 |
| Focus    | La génomique                                              | 182 |
| QCM      |                                                           | 183 |
|          | Partie 3 Métabolisme et fonctions de nutrition            |     |
| CHAPITRE | 7 LE MÉTABOLISME                                          | 187 |
| Fiche 46 | Le métabolisme intermédiaire, concepts généraux           | 188 |
| Fiche 47 | L'énergie cellulaire                                      | 192 |
| Fiche 48 | Les enzymes : catalyseurs biologiques                     | 199 |
| Fiche 49 | Le catabolisme des glucides à des fins énergétiques       | 203 |
|          |                                                           |     |

| Fiche 50 | Le catabolisme des lipides à des fins énergétiques                                                  | 208 |
|----------|-----------------------------------------------------------------------------------------------------|-----|
| Fiche 51 | Le cycle de Krebs, une voie amphibolique                                                            | 211 |
| Fiche 52 | Les voies de synthèse endogène<br>des substrats énergétiques                                        | 213 |
| Fiche 53 | La production d'ATP à l'échelle cellulaire                                                          | 215 |
| Fiche 54 | La photosynthèse chez les Embryophytes                                                              | 217 |
| Fiche 55 | L'efficacité de la photosynthèse<br>chez les Angiospermes de type C3, C4 et CAM                     | 222 |
| Fiche 56 | La photorespiration                                                                                 | 224 |
| Fiche 57 | Les réserves organiques                                                                             | 226 |
| Fiche 58 | Les métabolites secondaires des Spermatophytes                                                      | 232 |
| Focus    | Étude cinétique des réactions enzymatiques                                                          | 234 |
| QCM      |                                                                                                     | 235 |
| CHAPITRE | 8 L'ÉQUILIBRE DES COMPARTIMENTS LIQUIDIENS                                                          | 237 |
| Fiche 59 | Les compartiments liquidiens chez l'Homme                                                           | 238 |
| Fiche 60 | Le sang chez l'Homme                                                                                | 240 |
| Fiche 61 | L'homéostasie                                                                                       | 242 |
| Fiche 62 | Osmolarité des Eumétazoaires et facteurs du milieu                                                  | 250 |
| Fiche 63 | Le rein des Mammifères,<br>organe de l'équilibre hydrominéral                                       | 256 |
| Fiche 64 | La thermorégulation                                                                                 | 258 |
| Fiche 65 | Les compartiments liquidiens chez les Embryophytes                                                  | 262 |
| Focus    | Les diabètes sucrés                                                                                 | 268 |
| QCM      |                                                                                                     | 269 |
| CHAPITRE | 9 LA CIRCULATION                                                                                    | 271 |
| Fiche 66 | La circulation des liquides internes<br>chez les Eumétazoaires                                      | 272 |
| Fiche 67 | Le cœur des Mammifères                                                                              | 276 |
| Fiche 68 | Cellules myocardiques et contraction<br>du cœur des Mammifères                                      | 280 |
| Fiche 69 | Le débit cardiaque et son contrôle chez les Mammifères                                              | 282 |
| Fiche 70 | Les vaisseaux des Mammifères                                                                        | 284 |
| Fiche 71 | La pression artérielle                                                                              | 288 |
| Fiche 72 | La circulation des sèves chez les Angiospermes                                                      | 292 |
| Focus    | L'électrocardiogramme (ECG)                                                                         | 296 |
| QCM      |                                                                                                     | 297 |
| CHAPITRE | 10 La nutrition                                                                                     | 299 |
| Fiche 73 | Les besoins nutritifs des Embryophytes                                                              | 300 |
| Fiche 74 | Absorption de l'azote et du diazote du sol chez les Spermatophytes                                  | 302 |
| Fiche 75 | La symbiose mycorhizienne                                                                           | 306 |
| Fiche 76 | Les échanges entre organes puits et organes sources chez les Embryophytes, exemple des Angiospermes | 308 |
| Fiche 77 | Les cycles de vie et les réserves organiques chez les Angiospermes                                  | 310 |
| Fiche 78 | Les aliments, nutriments et besoins alimentaires chez l'Homme                                       | 313 |

| Fiche 79  | Prise alimentaire et structures digestives chez les Eumétazoaires          | 316        |
|-----------|----------------------------------------------------------------------------|------------|
| Fiche 80  | Les structures digestives chez les Eumétazoaires                           | 318        |
| Fiche 81  | La digestion chez l'Homme                                                  | 320        |
| Focus     | Les méthodes calorimétriques                                               | 326        |
| QCM       |                                                                            | 327        |
| CHAPITRE  | 11 LA RESPIRATION                                                          | 329        |
| Fiche 82  | Les échangeurs respiratoires                                               | 330        |
| Fiche 83  | La respiration branchiale                                                  | 334        |
| Fiche 84  | La respiration pulmonaire                                                  | 336        |
| Fiche 85  | Le transport des gaz respiratoires par les fluides internes                | 340        |
| Fiche 86  | Le contrôle des échanges respiratoires                                     | 344        |
| Fiche 87  | La respiration lors de changements de milieu de vie                        | 346        |
| Focus     | Le surfactant, un film tensioactif particulier                             | 348        |
| QCM       |                                                                            | 349        |
| CHAPITRE  | 12 L'excrétion                                                             | 351        |
| Fiche 88  | L'excrétion azotée                                                         | 352        |
| Fiche 89  | Principaux appareils excréteurs et leurs modalités de fonctionnement       | 356        |
| Fiche 90  | Le rein de Vertébrés                                                       | 360        |
| Focus     | Clairance rénale et hémodialyse                                            | 364        |
| QCM       |                                                                            | 365        |
|           | Partie 4 Les fonctions de relation                                         |            |
| CHAPITRE  | 13 LES BASES MOLÉCULAIRES DE LA COMMUNICATION INTERCELLULAIRE              | 369        |
| Fiche 91  | Les récepteurs membranaires et protéines associées                         | 370        |
| Fiche 92  | Les seconds messagers intracellulaires et leurs récepteurs                 | 374        |
| Fiche 93  | Les récepteurs nucléaires                                                  | 378        |
| Focus     | La notion de communication                                                 | 380        |
| QCM       |                                                                            | 381        |
| CHAPITRE  | 14 LA COMMUNICATION NERVEUSE                                               | 383        |
| Fiche 94  | Neurones et cellules gliales                                               | 384        |
| Fiche 95  | Les messages nerveux                                                       | 388        |
| Fiche 96  | Les bases ioniques du potentiel d'action sodique                           | 392        |
| Fiche 97  | La transmission synaptique chimique                                        | 394        |
| Fiche 98  | L'anatomie comparée du système nerveux                                     | 400        |
| Fiche 99  | L'encéphale des Vertébrés                                                  | 402        |
| Focus     | Ne pas confondre conduction électrique et conduction régénérative          | 404        |
| QCM       |                                                                            | 405        |
| CHAPITRE  | 15 LA COMMUNICATION HORMONALE                                              | 407        |
| Fiche 100 | Les messagers hormonaux :                                                  | 400        |
| Eicho 101 | de la synthèse à la cellule cible                                          | 408        |
| Fiche 101 | Le système hypothalamo-hypophysaire chez l'Homme<br>Les glandes surrénales | 410<br>412 |
| TICHE TUZ | Les gianaes surrenaies                                                     | 714        |

| Fiche 103    | Thyroïde et hormones thyroïdiennes                                    | 416        |
|--------------|-----------------------------------------------------------------------|------------|
| Fiche 104    | Pancréas et hormones pancréatiques                                    | 418        |
| Fiche 105    | Glandes et hormones agissant sur la calcémie                          | 420        |
| Fiche 106    | Les phytohormones des Spermatophytes, définition et diversité         | 422        |
| Fiche 107    | Les voies de signalisation de quelques phytohormones sur les cellules | 424        |
| Fiche 108    | Interactions ABA-gibbérellines et équilibre dormance-germination      | 428        |
| Fiche 109    | Les phytohormones et le développement de l'appareil végétatif         | 42.0       |
| F: 1 110     | des Spermatophytes                                                    | 430        |
|              | L'auxine et le grandissement cellulaire                               | 432        |
| Focus        | La découverte des hormones et des phytohormones                       | 434        |
| QCM          |                                                                       | 435        |
| CHAPITRE     | 16 Les fonctions sensorielles                                         | 437        |
| Fiche 111    | Le fonctionnement des systèmes sensoriels                             | 438        |
| Fiche 112    | La vision chez l'Homme                                                | 441        |
| Fiche 113    | L'organisation générale de la somesthésie                             | 454        |
| Fiche 114    | L'audition chez l'Homme                                               | 462        |
| Fiche 115    | Le système vestibulaire et le sens de l'équilibre                     | 471        |
| Fiche 116    | Fonctions sensorielles et modes de vie                                | 474        |
| Focus        | La mesure des champs récepteurs sensoriels                            | 478        |
| QCM          |                                                                       | 479        |
| CHAPITRE     | 17 L'INTÉGRATION DE SIGNAUX DE L'ENVIRONNEMENT PAR LES EMBRYOPHYTES   | 481        |
| Fiche 117    | Le déterminisme de la floraison                                       | 482        |
|              | Le déterminisme de la germination                                     | 484        |
|              | Les phototropines                                                     | 486        |
|              | Phototropisme et gravitropisme                                        | 488        |
| Focus        | Les nasties                                                           | 490        |
| QCM          |                                                                       | 491        |
| CHAPITRE     | 18 La motricité                                                       | 493        |
|              |                                                                       | 494        |
|              | Le muscle squelettique<br>Les activités motrices réflexes             | 500        |
|              |                                                                       | 503        |
|              | La posture<br>La notion de centre générateur de rythme (CPG)          |            |
|              |                                                                       | 505        |
|              | Le mouvement volontaire                                               | 507<br>511 |
|              | Les ajustements physiologiques accompagnant un exercice musculaire    |            |
| Focus<br>QCM | Myopathies des muscles squelettiques                                  | 514<br>515 |
|              | 19 Les défenses de l'organisme                                        |            |
|              |                                                                       | 517        |
| Fiche 127    | Le système immunitaire et le maintien de l'intégrité de l'organisme   | 518        |
|              | La réponse inflammatoire                                              | 524        |
|              | Les systèmes de défense de l'immunité innée                           | 526        |
|              | Les lymphocytes de l'immunité innée                                   | 530        |
| Fiche 131    | Les cellules dendritiques et la présentation des antigènes            | 534        |

| Fiche 132 | Les molecules du CMH                                                     | 538 |
|-----------|--------------------------------------------------------------------------|-----|
| Fiche 133 | La réponse immunitaire adaptative                                        | 542 |
| Fiche 134 | Les cellules régulatrices                                                | 549 |
| Fiche 135 | La génération des répertoires T et B                                     | 551 |
| Fiche 136 | Dysfonctionnements du système immunitaire                                | 556 |
| Fiche 137 | L'immunothérapie                                                         | 563 |
| Focus     | La Covid 19                                                              | 566 |
| QCM       |                                                                          | 567 |
|           | Partie 5 Reproduction et développement                                   |     |
| CHAPITRE  | 20 RENOUVELLEMENT ET MORT CELLULAIRE                                     | 571 |
| Fiche 138 | Le cycle cellulaire et son contrôle chez les Eucaryotes                  | 572 |
| Fiche 139 | La mitose chez les Eucaryotes                                            | 576 |
| Fiche 140 | La méiose chez les Eucaryotes                                            | 578 |
| Fiche 141 | Mort cellulaire et apoptose                                              | 580 |
| Focus     | Les cellules souches                                                     | 582 |
| QCM       |                                                                          | 583 |
| CHAPITRE  | 21 LA REPRODUCTION                                                       | 585 |
| Fiche 142 | Les modalités de la reproduction chez les Métazoaires                    | 586 |
| Fiche 143 | Gamétogenèse et fécondation chez les Mammifères                          | 590 |
| Fiche 144 | La reproduction humaine                                                  | 593 |
| Fiche 145 | La gestation chez les Mammifères                                         | 597 |
| Fiche 146 | Naissance et lactation chez les Mammifères                               | 601 |
| Fiche 147 | La diversité des modes de multiplication asexuée                         | 605 |
| Fiche 148 | La diversité des modalités de la rencontre des cellules sexuelles        | 607 |
| Fiche 149 | Le modèle de la fleur des Angiospermes                                   | 609 |
| Fiche 150 | La formation des gamétophytes chez les Angiospermes                      | 615 |
| Fiche 151 | La pollinisation                                                         | 617 |
|           | La double fécondation et la formation de la graine chez les Angiospermes | 620 |
|           | La croissance du fruit                                                   | 625 |
| Fiche 154 | La germination de la graine                                              | 627 |
| Focus     | La contraception chimique féminine                                       | 630 |
| QCM       |                                                                          | 631 |
| CHAPITRE  | 22 Croissance, développement et leur contrôle                            | 633 |
| Fiche 155 | Les mécanismes généraux de l'embryogenèse chez les Eumétazoaires         | 634 |
| Fiche 156 | De l'œuf à la neurulation chez les Batraciens                            | 637 |
| Fiche 157 | L'induction du mésoderme chez les Batraciens                             | 644 |
| Fiche 158 | La détermination des polarités<br>antéro-postérieure et dorso-ventrale   | 646 |
| Fiche 159 | L'organogenèse du membre des Vertébrés tétrapodes                        | 648 |
| Fiche 160 | La métamorphose                                                          | 650 |
| Focus     | Déterminisme du sexe chez l'Homme                                        | 652 |
| QCM       |                                                                          | 653 |
| •         |                                                                          |     |

## Partie 6 Écologie et éthologie

| CHAPITRE 2        | RÉPARTITION DES ÊTRES VIVANTS ET FACTEURS ÉCOLOGIQUES             | 657 |
|-------------------|-------------------------------------------------------------------|-----|
| Fiche 161         | La notion d'écosystème                                            | 658 |
| Fiche 162         | Exemples d'écosystèmes                                            | 664 |
| Fiche 163         | , , ,                                                             | 670 |
| Focus             | La déforestation                                                  | 674 |
| QCM               |                                                                   | 675 |
| CHAPITRE 2        | 24 Flux de matière et d'énergie au sein de l'écosystème           | 677 |
| Fiche 164         | Les réseaux trophiques                                            | 678 |
| Fiche 165         | Les flux de matière                                               | 681 |
| Fiche 166         | La biodiversité                                                   | 687 |
| Fiche 167         | Quelques actions de l'Homme sur la biodiversité                   | 692 |
| Focus             | Diversité écologique des Pyrénées : un patrimoine témoin du passé | 696 |
| QCM               |                                                                   | 697 |
| CHAPITRE 2        | 25 POPULATIONS ET COMMUNAUTÉS                                     | 699 |
| Fiche 168         | La communication chez les Eumétazoaires                           | 700 |
| Fiche 169         | Les relations intraspécifiques                                    | 702 |
| Fiche 170         | Les comportements parentaux                                       | 706 |
| Fiche 171         | Les relations interspécifiques                                    | 709 |
| Focus             | Quelques repères de l'histoire de l'éthologie                     | 714 |
| QCM               |                                                                   | 715 |
| ANNEXES           |                                                                   | 717 |
| GLOSSAIRE         | FRANÇAIS-ANGLAIS                                                  | 727 |
| <b>B</b> IBLIOGRA | PHIE                                                              | 743 |
| INDEX             |                                                                   | 745 |
| CRÉDITS IO        | CONOCRAPHIQUES                                                    | 751 |

## **Avant-propos**

Nos connaissances en biologie ont fait d'énormes progrès ces dernières décennies grâce, en particulier, à l'évolution des techniques d'investigation. Ces dernières ont permis d'approfondir aussi bien les aspects moléculaires du fonctionnement du vivant que son analyse systémique.

Cette nouvelle édition a, de ce fait, été entièrement remaniée afin de tenir compte des connaissances acquises ces dernières années dans les différents domaines de la biologie.

Cet ouvrage est organisé en fonction de ces données actuelles. Chaque fois que possible, l'approche est transversale, mettant en avant les principes fondamentaux du fonctionnement des êtres vivants.

Les connaissances sont organisées en six grandes parties :

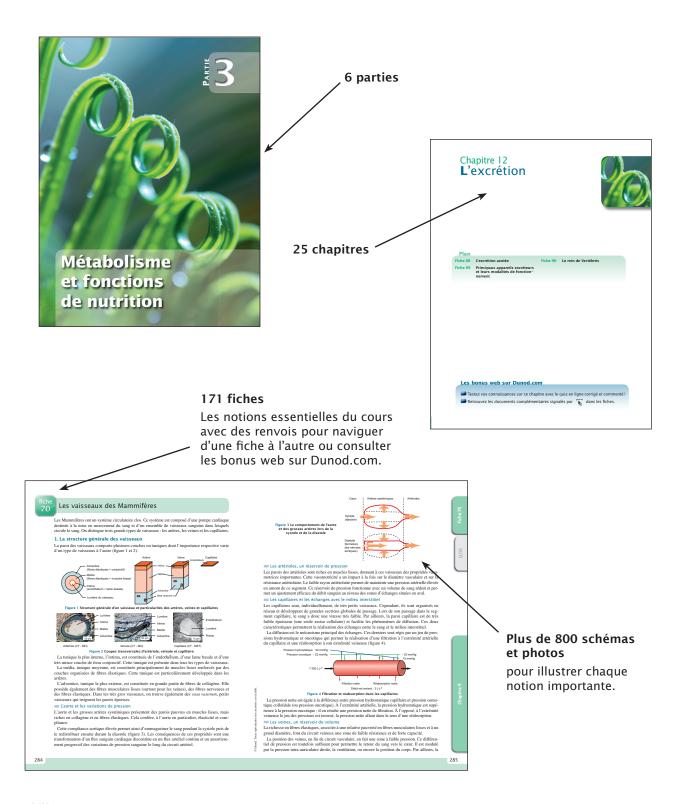
- Organisation des systèmes biologiques ;
- Information génétique ;
- Métabolisme et fonctions de nutrition ;
- Fonctions de relation ;
- Reproduction et développement ;
- Écologie et éthologie ;

au total, 171 fiches permettant d'aborder l'ensemble des aspects de la biologie.

Ce découpage est nécessairement arbitraire, c'est pourquoi dans chaque fiche présentant une notion précise, de multiples renvois permettent au lecteur de se référer rapidement aux notions associées à la question traitée.

En termes de présentation, cet ouvrage est adapté aux méthodes actuelles de lecture et aux contraintes des étudiants : lecture rapide, représentation imagée avec de nombreux schémas et photographies, QCM avec corrections argumentées, compléments sur site internet, bibliographie.

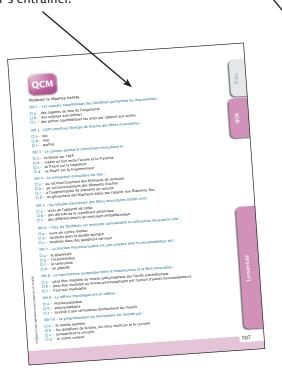
Un glossaire français-anglais des principaux termes scientifiques permet de retrouver rapidement la définition d'un terme ou d'une notion et sa traduction en anglais. De plus, l'ensemble des abréviations classiquement utilisées en biologie est listé en début d'ouvrage.


Afin de rompre avec ce découpage arbitraire et d'aider à une réflexion globale, 22 thèmes transversaux sont proposés et corrigés sous forme de plan sur le site internet.

Ce livre est accompagné de bonus web pour les étudiants, conçus comme de véritables compléments de l'ouvrage. Ils présentent :

- des animations illustrant différents processus dynamiques ;
- des photographies supplémentaires ;
- des sujets transversaux et leurs corrections ;
- des QCM supplémentaires ;
- l'accès à certaines illustrations de l'ouvrage.

D'un niveau scientifique correspondant aux étudiants de licence (L2-L3) de Sciences de la Vie, cet ouvrage permettra également aux étudiants de Master préparant les concours de l'enseignement en Sciences de la Vie et de la Terre, ou en Biotechnologie, de réviser simplement et rapidement leurs connaissances.


# Comment utiliser



# cet ouvrage?

En fin de chapitre, 10 QCM pour s'entraîner.

Les réponses commentées au verso.





#### Des focus

techniques ou historiques sur une page à la fin de chaque chapitre.

#### Et aussi...

- Un glossaire français/anglais
- Une liste des abréviations utilisées dans l'ouvrage





# **Abréviations**

| 5HT       | 5 hydroxytryptamine,              | CAP      | Catabolism Activating Protein | FSH             | Folliculo Stimulating                |
|-----------|-----------------------------------|----------|-------------------------------|-----------------|--------------------------------------|
|           | sérotonine                        | Cas      | CRISPR associated             |                 | Hormone                              |
| A         | Adénine                           | CASPASE  | Cysteine Aspartate Specific   | G               | Guanine                              |
| AAP       | Actin Associated Protein          |          | Protease                      | GA              | Gibberellic Acid                     |
| ABA       | ABscissic Acid                    | CBG      | Corticosteroid Binding        | GABA            | Gamma Amino-Butyric                  |
| ABP       | Auxine Binding Protein            |          | Globulin, Transcortine        | CATE            | Acid                                 |
| AC        | Adenylyl cyclase                  | CCK      | CholéCystoKinine              | GALT            | Gut Associated Lymphoïd              |
| ACC       | Acetyl-CoA Carboxylase            | Cdc6     | Cell division cycle 6         |                 | Tissue                               |
| ACh       | Acétylcholine                     | Cdk      | Cyclin dependant kinase       | GAP             | GTPase Activating Protein            |
| AChE      | Acétylcholine Esterase            | CdkI     | Cyclin dependant kinase       | GBP             | GSK Binding Protein                  |
| ACTH      | Adrenal CorticoTrophin            |          | Inhibitor                     | GDH             | Glutamate DesHydrogenase             |
|           | Hormone, Corticotrophine          | CDS      | Cytosolic DNA Sensor          | GDI             | Guanine nucleotide                   |
| ADCC      | Antibody-Dependent Cell-          | Cdt1     | Cdc10 dependent transcript 1  |                 | Dissociation Inhibitor               |
|           | mediated Cytotoxicity             | CK       | CytoKinine                    | GDNF            | Glial-Derivated Nerve growth         |
| ADH       | AntiDiuretic Hormone              | CLR      | C-Lectin type Receptor        | ann             | Factor                               |
| ADN (DNA) | Acide désoxyribonucléique,        | CMH      | Complexe Majeur               | GDP             | Guanosine DiPhosphate                |
|           | Desoxyribo Nucleic Acid           |          | d'Histocompatibilité          | GEF             | Guanine nucleotide Exchange          |
| ADP       | Adénosine DiPhosphate             | COMT     | Catéchol-O-Méthyl-            |                 | Factor                               |
| ADPRc     | ADP Ribose cyclique               |          | Transférase                   | GFAP            | Glial Fibrillary Acidic Protein      |
| AER       | Apical Ectodermal Ridge           | COP      | COat Protein                  | GH              | Growth Hormone                       |
| AGMI      | Acide Gras Mono-Insaturé          | CPA      | Cellule Présentatrice de      | GHIH            | Growth Hormone Inhibiting            |
| AGPI      | Acide Gras Poly-Insaturé          |          | l'Antigène                    |                 | Hormone, Somatostatine               |
| AGS       | Acides Gras Saturé                | CPE      | Cytoplasmic Polyadenylation   | GHRH            | Growth Hormone Releasing             |
| AHKs      | Arabidospis hybrid Histidine      |          | Element                       | C1              | Hormone, Somatocrinine               |
|           | protein Kinases                   | CPEB     | CPE Binding protein           | Glu             | Glutamate                            |
| AIA       | Acide Indol-3 Acétique            | CPG      | Central Pattern Generator     | GluT            | Glucose Transporter                  |
| AIF       | Apoptosis-Inducing Factor         | CR       | Complement Receptor           | GMPc            | Guanosine MonoPhosphate              |
| AMPA      | 2-Amino-3-(5-Méthyl-              | CRH      | Corticotropin Realising       | C DII           | cyclique                             |
|           | 3-hydroxy-1,2-oxazol-4-yl)        |          | Hormone, Corticolibérine      | GnRH            | Gonadotropine Releasing              |
| 13.00     | Propanoïque Acide                 | CRISPR   | Clustered Regularly           | CNIDD           | Hormone, Gonadolibérine              |
| AMPc      | Adénosine Monophosphate           |          | Interspaced Short Palindromic | GNRP            | Guanine Nucleotide Releasing Protein |
| ANIE      | Cyclique                          |          | Repeats                       | GOGAT           | Glutamine Oxo-Glutarate              |
| ANF       | Atrial Natriuretic Factor         | DA       | DopAmine                      | GOGAI           | AminoTransferase                     |
| AP        | Adaptine                          | DAG      | Di-Acyl Glycérol              | GS              | Glutamine Synthetase                 |
| Apaf      | Apoptotic protease-activating     | DAMP     | Danger Associated Molecular   | GSK             | Glycogen Synthetase Kinase           |
| APC       | factor Anaphase Promoting Complex |          | Pattern                       | GTP             | Guanosine TriPhosphate               |
| ARF       | Afférents du Réflexe              | dB       | Décibel                       | Hb              | Hémoglobine                          |
| AKF       | de Flexion                        | DBD      | DNA Binding Domain            | hCG             | Human Chorionic                      |
| ARN (RNA) |                                   | DBO      | Demande Biochimique en        | iico            | Gonadotropin                         |
| ART (MVA) | RiboNucleic Acide                 |          | diOxygène                     | HLA             | Human Leucocyte Antigen              |
| ARNi      | ARN interférent                   | DC       | Dendritic Cell                | HR              | Hypersensitive Response              |
| ARNm      | ARN messager                      | DCO      | Demande Chimique en           | HRE             | Hormone Response Element             |
| ARNmi     | micro-ARN                         |          | diOxygène                     | HRGP            | Hydroxyproline Rich                  |
| ARNsi     | small interfering ARN             | DDCP     | DNA Damage CheckPoint         | TIKOI           | GlycoProtein                         |
| ARNt      | ARN de transfert                  | ddp      | Différence de potentiel       | Hsp             | Heat shock protein                   |
| ARS       | Autonomously Replicating          | DHPR     | DiHydroPyridines Receptor     | HTRA2           | High Temperature Regulated           |
| 71105     | Sequence                          | Diablo   | Direct IAP binding protein    | 1111012         | protein A2                           |
| AS        | Acide Salicylique                 |          | with low pl                   | Hz              | Hertz                                |
| AS        | Asparagine Synthetase             | DIP      | Disulfure Isomerase Protein   | IBGN            | Indice BioGénéral Normalisé          |
| ASC       | Amiloride sensitive Sodium        | DIT      | Di-IodoTyrosine               | ICAM            | Inter Cellular Adhesion              |
|           | Channel                           | DSCF     | Doppler-Shifted Constant      |                 | Molecule                             |
| ASIC      | Acid Sensitive Ionic Channel      |          | Frequencies                   | ICD             | Immunogenic Cell Death               |
| ATP       | Adénosine TriPhosphate            | ECG      | ÉlectroCardioGramme           | Ig              | Immunoglobline                       |
| BCR       | B Cell Receptor                   | ERF      | Endothelium Relaxing Factor   | IL              | InterLeukine                         |
| BDNF      | Brain Derivated Nerve growth      | ETR      | EThylene Receptor             | ILC             | Innate Lymphoid Cell                 |
|           | Factor                            | FAD      | Flavine Adenine Dinucléotide  | ILT             | Ig-Like Transcripts                  |
| BER       | Base Excision Repair              | FcR      | Fc Receptor                   | INF             | Interféron                           |
| BP        | Binding Protein                   | FDC      | Follicular Dendritic Cell     | IP <sub>3</sub> | Inositol tri-Phosphate               |
| C         | Cytosine                          | FGF      | Fibroblastic Growth Factor    | IPC             | Interferon Producing Cell            |
| CAK       | Cdk Activating Kinase             | FISH     | Fluorescence In Situ          | IPEX            | Immunodysregulation                  |
| CAM       | Cell Adhesion Molecule            |          | Hybridization                 | 11 221          | Polyendocrinopathy                   |
| CAM       | Crassulacean Acid                 | FMN      | Flavine MonoNucleotide        |                 | Enteropathy X-linked                 |
|           | Crussuuceun Acia                  | 1 1/11 1 |                               |                 | Lисторину А-шкей                     |
|           | Metabolism                        | FNR      | Ferredoxine NADP-Reductase    |                 | syndrome                             |

| IPP       | Iso Pentenyl Pyrophosphate           | NTS         | Noyau du Tractus Solitaire                     | SC        | Stimulus Conditionnel                 |
|-----------|--------------------------------------|-------------|------------------------------------------------|-----------|---------------------------------------|
| IRM       | Imagerie par Résonance               | OAS         | Oligo-Adenylate Synthetase                     | SCID      | Severe Combined                       |
| IIXIVI    | Magnétique                           | OEC         | Oxygen Evolving Complex                        | SCID      | ImmunoDeficiency                      |
| ISR       | Induced Systemic Resistance          | ORC         | Origin Recognition Complex                     | SDS       | Sodium Dodecyl Sulfate                |
| ITAM      | Immunoreceptor Tyrosine-             | ORF         | Open Reading Frame                             | SGLT      | Sodium Glucose Linked                 |
| 111111    | based Activating Motif               | P2X         | Récepteur purinergique                         | SOLI      | Transporter                           |
| ITIM      | Immunoreceptor Tyrosine-             | PABPI       | Poly A Binding Protein I                       | SI        | Stimulus Inconditionnel               |
|           | based Inhibition Motif               | PAF         | Platelet Activating Factor                     | SIDA      | Syndrome de l'Immuno-                 |
| JH        | Juvenile Hormone                     | PAL         | Phenylalanine Ammonia                          | SIDA      | Déficience Acquise                    |
| KIR       | Killer cells Ig-like Receptors       |             | Lyase                                          | SNA       | Système Nerveux Autonome              |
| LAR       | Local Acquired Resistance            | PAM         | Protospacer Adjacent Motif                     | SNAP      | Soluble NSF Attachement               |
| LDB       | Ligand Binding Domain                | PAMP        | Pathogen Associated                            | SNAF      | Protein                               |
| LDL       | Low Density Lipoprotein              |             | Molecular Pattern                              | SNAP25    | Synaptosomal Association              |
| LFA       | Leucocyte Function Antigene          | PCNA        | Proliferating Cell Nuclear                     | SIVAI 23  | Protein of 25 kDa                     |
| LH        | Luteinising Hormone                  |             | Antigen                                        | SNARE     | SNAP Receptor                         |
| LHC       | Light Harvesting Complex             | PCR         | Polymerase Chain Reaction                      | SNC       | Système Nerveux Central               |
| LIR       | Leucocyte Ig-like Receptor           | PDE         | PhosphoDiEstérase                              | SnNRP     | Small Nuclear                         |
| LOV       | Light Oxygen Voltage                 | PEP         | PhosphoEnol Pyruvate                           | SIINKF    | RibonucleoProtein                     |
| LPS       | LipoPolySaccharide                   | PEPc        | PhosphoEnol Pyruvate                           | SNV       |                                       |
| LTA       | Lipoteichoic Acid                    |             | carboxylase                                    | SP        | Système NeuroVégétatif<br>Substance P |
| LTR       | Long Terminal Repeat                 | PET         | Positrons Emission                             |           |                                       |
| LTTD      | Lateral Trigeminal Tract Down        |             | Tomography                                     | SPL       | Sound Pressure Level                  |
| MALT      | Mucosa-Associated Lymphoid           | PI          | Phosphatidyl-Inositol                          | SRP       | Signal Recognition Protein            |
|           | Tissue                               | PIF         | Phytochrome Interaction Factor                 | SSB       | Single Strand Binding protein         |
| MAO       | MonoAmines Oxydase                   | PIH         | Prolactine Inhibitory                          | T         | Thymine                               |
| MAMP      | Microbial Associated                 |             | Hormone                                        | T3        | Tri-iodothyronine                     |
|           | Molecular Pattern                    | PKA         | Protéine Kinase AMPc-                          | T4        | Tétra-iodothynonine –                 |
| MAP       | Microtubule Associated               | DIVC        | dépendante                                     |           | thyroxine                             |
|           | Protein                              | PKC         | PhosphoKinase C                                | TAF       | TBP Associated Factor                 |
| MAPK      | MAP Kinase                           | PKR         | Protein Kinase R                               | TAP       | Transporter associated with           |
| MASP      | MBP ASsociated Protein               | PLC<br>PLT  | PhosphoLipase C                                |           | Antigen Processing                    |
| MBL       | Mannose Binding Lectin               | PLI<br>PP   | Potentialisation à Long Terme<br>Pyrophosphate | TBP       | TATA box Binding Protein              |
| MBP       | Mannose Binding Protein              |             | Pyrophosphate ion                              | TCR       | T Cell Receptor                       |
| Mcm       | Minichromosome maintenance           | Ppi<br>PPSE | Potentiel Post Synaptique                      | TF        | Transcription factor                  |
| MCP       | Mitotic CheckPoint                   | TISE        | Excitateur                                     | TGF       | Transformation Growth                 |
| MDSC      | Myeloid Derived Suppressive          | PPSI        | Potentiel Post Synaptique                      |           | Factor                                |
|           | Cell                                 | 1101        | Inhibiteur                                     | TGN       | Trans Golgian Nertwork                |
| MEC       | Matrice ExtraCellulaire              | PR          | Pathogenesis Related                           | Th        | Lymphocyte T helper                   |
| MIC       | MHC Class 1 related                  | PRH         | Prolactine Releasing                           | TIM       | Translocase of the Inner              |
| MIT       | Mono-IodoTyrosine                    |             | Hormone                                        |           | Membrane                              |
| MPF       | Mitotic Promoting Factor             | PrP         | Prion Protein                                  | TK        | TachyKinines                          |
| MPO       | MyéloPerOxydase                      | PRR         | Pattern Recognition Receptor                   | TK        | Thimidine Kinase                      |
| MTOC      | MicroTubule Organizing               | PS          | PhotoSystème                                   | TLR       | Toll Like Receptor                    |
|           | Center                               | PTH         | ParaThyroïd Hormone -                          | TMAO      | TriMethylAmine Oxyde                  |
| NA        | Nord Adrénaline                      |             | Parathormone                                   | TNF       | Tumor Necrosis Factor                 |
| NAD       | Nicotinamide Adenine                 | PZ          | Progress Zone                                  | TOM       | Translocase of the Outer              |
|           | Dinucleotide                         | RCP         | Replication CheckPoint                         |           | Membrane                              |
| NADP      | Nicotinamide Adenine                 | RE          | Response Element                               | tracr RNA | transacting small RNA                 |
| NCD       | Dinucleotide Phosphate               | RE-BP       | Response Element – Binding                     | TRH       | Thyrotropin Releasing                 |
| NCR       | Natural Cytotoxicity                 |             | Protein                                        |           | Hormone, Thyréolibérine               |
| NED       | Receptors                            | RER (REG)   |                                                | TRP       | Transient Receptor Potential          |
| NER       | Nucleotides Excision Repair          |             | Reticulum, Réticulum                           | TSH       | Thyroïd Stimulating Hormone,          |
| NGF       | Nerve Growth Factor                  |             | Endoplasmique Granuleux                        |           | Thyréotrophine                        |
| NiR       | Nitrite Reductase                    | RF          | Releasing Factor                               | Tus       | Terminus utilisation substance        |
| NK        | Natural Killer                       | RFc         | Fc Receptor                                    | UCP       | UnCoupled Protein                     |
| NKR       | NK cells Receptors                   | RF-C        | Replicating Factor C                           | UDP       | Uridine DiPhosphate                   |
| NKT       | Natural Killer T cell                | RISC        | RNA Induced Silencing                          | UTP       | Uridine TriPhosphate                  |
| NLR       | NOD-Like Receptor                    | DIII        | Complex                                        | UTR       | UnTranslated Region                   |
| NMDA      | N-Méthyl-D-Aspartate                 | RLH         | Rig-1-Like Helicase                            | VAMP      | Vesicule Associated                   |
| NO        | Nitric Oxyde, monoxyde               | ROI         | Reactive Oxygen                                | 77 11711  | Membrane Protein                      |
| NIDC      | d'azote                              | DDA         | Intermediates                                  | VLDL      | Very Low Density Lipoprotein          |
| NPC       | Nuclear Pore Complex                 | RPA         | Replicating Protein A                          | XP        | Xeroderma Pigmentous                  |
| NR<br>NDT | Nitrate reductase                    | RubisCO     | Ribulose 1,5 bisphosphate                      | XTH       | Xyloglucane                           |
| NRT       | Noyau Réticulaire                    | RXR         | Carboxylase/Oxygénase                          | A111      | Transglycosylases Hydrolases          |
| NSF       | Thermosensible                       | RyR         | Retinoid X Receptor Ryanodine Receptor         | YAC       | Yeast Artificial Chromosome           |
| 1101,     | N-ethylmaleimide Sensitive<br>Factor | SAR         | Systemic Acquired Resistance                   | ZO        | Zonula Occludens                      |
|           | - 40.07                              | STILL       | Systemic Required Resistance                   | 20        | 25mma Occumento                       |

## Remerciements

Nous tenons à remercier tout particulièrement plusieurs collègues ou autres personnes de notre entourage qui, à divers titres, nous ont permis de réaliser cet ouvrage :

- Annie Balay, ancienne professeure de lycées et collèges
- Vanessa Beunèche, éditrice
- Marie Conrath, ancienne directrice de recherches CNRS, Paris
- Monique Gauthier, ancienne professeure d'Université, Toulouse
- Yves Gioanni, ancien maître de conférences d'Université, Paris
- Laetitia Jammet, éditrice
- Françoise Lauga, ancienne professeure d'Université, Toulouse
- Jacques Lauga, ancien professeur d'Université, Toulouse
- Gaëlle Richard, assistante de collection, Université Rennes I
- Jean-Pierre Richard, ancien ingénieur de recherche, Rennes
- Mélanie Richard, ingénieure agricole, Paris

L'organisation des systèmes biologiques

# Chapitre 1

# L'organisation des cellules du vivant



#### Plan

| Fiche 2      | L'unité du vivant  La cellule bactérienne    | Fiche 7  | Membranes et compartimentation intracellulaire |  |
|--------------|----------------------------------------------|----------|------------------------------------------------|--|
|              | La cellule des Archées<br>La cellule animale | Fiche 8  | Le cytosquelette<br>Les mitochondries          |  |
|              | <b>J</b>                                     |          | Les plastes                                    |  |
| Fiche 6 La r |                                              | Fiche 11 | Le noyau des cellules<br>eucaryotes            |  |

#### Les bonus web sur Dunod.com







dans les fiches.



#### L'unité du vivant

Les êtres vivants sont caractérisés par trois points communs : ils sont organisés en cellules, ont une activité métabolique et sont capables de se reproduire. Cette définition exclut les virus qui ne peuvent se reproduire seuls.

#### 1. L'organisation cellulaire des organismes vivants

#### Les Bactéries et les Archées

Les Bactéries et les Archées sont des organismes unicellulaires procaryotes, c'est-à-dire dépourvus de noyau. Les caractéristiques morphologiques de tous ces organismes sont extrêmement variables. Les espèces et leur parenté biologique sont définies sur la base de critères moléculaires, par comparaison de leurs séquences d'ARN 16S, voire par séquençage complet du génome.

Le matériel génétique de ces organismes est porté par un seul chromosome de structure circulaire, et parfois de plasmides plus petits.

Les Bactéries présentent deux caractéristiques qui les distinguent des autres domaines du vivant (figure 1) :

- elles possèdent une paroi cellulaire rigide formée de peptidoglycane contenant de l'acide muramique ;
- l'initiation de la traduction est assurée par un ARN de transfert qui porte une N-formyl méthionine et non de la méthionine comme chez les Archées et les Eucaryotes.

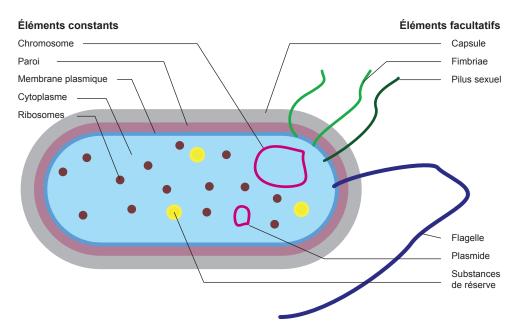
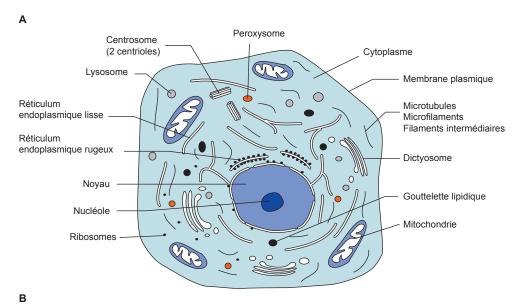




Figure 1 Schéma de Bactérie

#### Les Eucaryotes

Les cellules eucaryotes, plus complexes, possèdent un noyau protégeant plusieurs chromosomes linéaires. Autour se trouve le cytoplasme au sein duquel baignent des organites mono-membranaires (réticulum rugueux et lisse, dictyosomes, vésicules, mitochondries et, en plus pour les

cellules végétales, des plastes dont les chloroplastes) (figure 2). Ces cellules peuvent être soit isolées (exemple : chez les Ciliés) ou regroupées en tissus (exemple : chez les Mammifères et les Angiospermes).



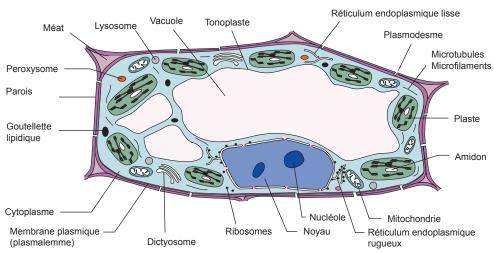



Figure 2 Schéma de cellules eucaryotes A : Animale ; B : Végétale



#### 2. L'activité métabolique des êtres vivants

Dunod. Toute reproduction non autorisée est un délit.

Le catabolisme assure la production des molécules pourvoyeuses d'énergie au sein de la cellule telles que l'ATP et les coenzymes réduits.

En présence de dioxygène (aérobie), c'est la dégradation complète des glucides et des lipides lors de la respiration cellulaire qui assure cette production (figure 3).

En absence de dioxygène (anaérobie), la fermentation (lactique ou alcoolique), voie de dégradation partielle, est mise en jeu. Notons qu'en l'absence de dioxygène certains micro-organismes sont capables de faire de la respiration anaérobie.

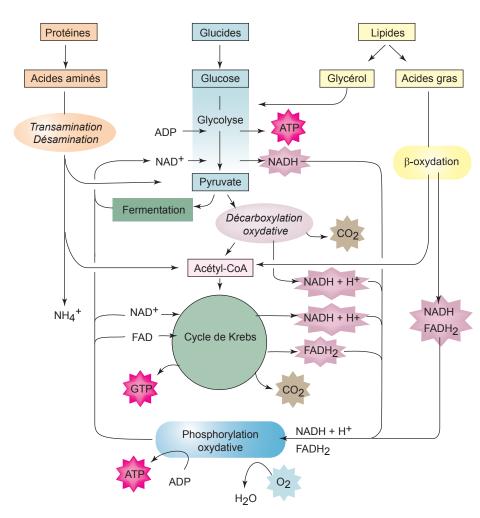



Figure 3 Les étapes de la glycolyse et du cycle de Krebs

L'anabolisme permet la synthèse des molécules plastiques (protéines, lipides, polynucléotides) qui entrent dans la construction de la cellule (membranes, matériel génétique, cytosquelette, etc.).

#### 3. La capacité à se reproduire

La reproduction asexuée permet aux organismes pères de générer des individus fils à partir d'un lot de cellules qui sont issues de nombreuses divisions mitotiques. Ainsi, le génome est identique d'une génération à l'autre : c'est le clonage.

La reproduction sexuée est caractérisée par la formation de gamètes mâles, les spermatozoïdes, et de gamètes femelles, les ovocytes et ovules des animaux et oosphères des végétaux. Ces cellules sexuelles sont génétiquement originales car elles sont issues de la méiose qui assure des recombinaisons génétiques.

Lors de la fécondation, la rencontre des gamètes conduit à la formation d'un œuf, ou zygote. Cette étape permet l'association des différents gènes parentaux au sein d'un individu qui est alors un être génétiquement original.

#### La cellule bactérienne

Les Bactéries, au même titre que les Archées, sont des organismes unicellulaires procaryotes, c'està-dire dépourvus de noyau. Comme tous ces organismes, les caractéristiques morphologiques sont extrêmement variables y compris au sein de groupes génétiquement très proches. C'est pourquoi, à l'heure actuelle, les espèces et leur parenté biologique sont définies sur la base de critères moléculaires, par comparaison de leurs séquences d'ARN 16S, voire par séquençage complet du génome.

Les Bactéries présentent deux caractéristiques qui les distinguent des autres domaines du vivant : elles possèdent une paroi cellulaire de peptidoglycanes contenant de l'acide muramique (sauf cas de perte secondaire comme chez les Mycoplasmes), et l'initiation de la traduction est assurée par un ARN de transfert qui porte une N-formyl méthionine et non de la méthionine comme chez les Archées et les Eucaryotes.

Comme pour les Archées, l'absence d'une véritable sexualité rend impossible de définir les espèces bactériennes sur un critère d'interfécondité. En revanche, des échanges d'ADN sont possibles entre individus appartenant à des groupes génétiquement très distants. De plus, le chromosome n'ayant qu'un seul allèle de chacun des gènes, les mutations sont immédiatement intégrées à l'ADN.

#### 1. La morphologie des Bactéries

Les Bactéries présentent une morphologie très variable. De l'ordre du micromètre, leur taille varie de 0,1 µm, pour les Mycoplasmes, à 0,3 mm pour les plus grosses telles *Thiomargarita namibiensis* (la perle de soufre de Namibie), voire 0,6 mm pour *Epulopiscium fishelsoni*, symbionte intestinal d'Actinoptérygiens.

Les diverses formes rencontrées sont les formes sphériques caractéristiques des coques, les formes cylindriques définissant les bacilles et les formes spiralées caractéristiques des Spirochètes.

La morphologie des Bactéries est adaptée à leur niche écologique et à leur capacité à se déplacer. Ainsi, les bactéries sphériques dont le rapport surface/volume est faible seraient avantagées dans des milieux riches en nutriments et sont rarement mobiles. Inversement, les bacilles, dont le rapport surface/volume est plus grand, seraient mieux adaptés à une vie dans des milieux pauvres. Ils peuvent par ailleurs être munis de flagelles et se déplacer.

#### 2. La paroi des Bactéries

La paroi est une structure rigide et résistante qui protège la bactérie et lui donne sa forme. Elle contient un polymère complexe constant, le peptidoglycane ou muréine. Formé de chaînes d'oses aminés (glucosamine et acide muramique, reliés par des liaisons  $\beta$  1,4) interconnectées par des enchaînements d'acides aminés constituant des ponts peptidiques (figure 1).

La plupart des Bactéries présentent une paroi de 10 nm d'épaisseur, constituée d'une fine couche de peptidoglycanes recouverte d'une membrane externe ou pariétale, renfermant des phospholipides, des lipopolysaccharides (LPS) et des protéines (figure 2A). La paroi de ces Bactéries ne retient pas la célèbre coloration de Gram, elles sont dites gram négatif (Gram—).

Un groupe de Bactéries, fortement apparentées, présente une paroi caractérisée par l'absence de la membrane externe et une hypertrophie du peptidoglycane. Cette paroi présente une structure homogène et une épaisseur variant de 10 à 80 nm (figure 2B). Elle renferme des acides téichoiques et lipotéichoiques (LTA). Cette paroi épaisse de peptydoglycane retient la coloration de Gram à l'intérieur de la cellule bactérienne qui est alors dite Gram positif (Gram+). C'est le cas par exemple des genres *Bacillus* (dont *B. anthracis*, agent de l'anthrax), *Clostridium* (dont *C. botuli* agent du botulisme), *Lis*-

*teria*, *Lactobacillus*, *Staphylococcus*, etc. Toutefois, ce groupe contient également les mycoplasmes, qui ont perdu la paroi, et apparaissent donc Gram– après coloration de Gram.

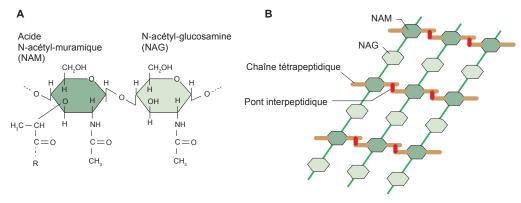



Figure 1 Acide N-acétyl-muramique et N-acétyl-glucosamine (A); Peptidoglycane ou muréine (B)

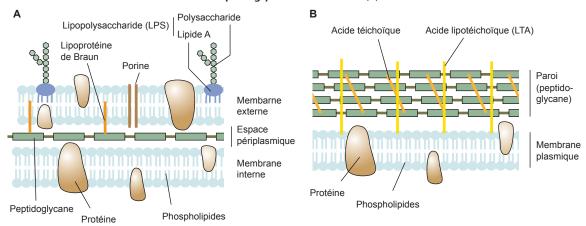



Figure 2 Structure schématique de la paroi des bactéries à Gram négatif (A) et des bactéries à Gram positif (B)

#### 3. Exemples de caractéristiques spécifiques

Certaines espèces bactériennes peuvent s'entourer d'enveloppes supplémentaires de polysaccharides, plus ou moins structurées, telles que les capsules. Ces dernières jouent un rôle important dans le pouvoir pathogène des Bactéries en s'opposant à la phagocytose et à l'activation de la voie alterne du système du complément.

Certaines Bactéries produisent des appendices émergeant de la surface cellulaire. Les plus répandus sont les *fimbrae* qui interviennent dans les phénomènes d'adhésion, les *pili*, impliqués dans les processus de conjugaison, et les flagelles, assurant la mobilité des cellules.

La plupart des Bactéries renferment également des plasmides, molécules d'ADN bicaténaires, généralement circulaires, extra-chromosomiques, dont la taille varie de 1 à 300 kilobases, doués de réplication autonome et transmissibles de façon stable à la descendance. Ils confèrent parfois un avantage sélectif aux bactéries qui les hébergent. C'est le cas notamment des plasmides de résistance aux antibiotiques.

Enfin, certaines Bactéries ont la possibilité de sporuler lorsque les conditions de vie deviennent défavorables. Des endospores se forment alors au sein du cytoplasme. Elles diffèrent de la cellule végétative par leur forme, leur structure, leur équipement enzymatique et par leur résistance aux agents physiques et chimiques.

#### La cellule des Archées

Les Archées, ou *Archaea*, constituent un groupe d'organismes procaryotes mis en évidence grâce à la phylogénie moléculaire de leurs gènes d'ARN ribosomique 16S. Les espèces biologiques, et leur parenté, sont définies essentiellement sur la base de leurs séquences d'ARN 16S, mais également par séquençage complet du génome.

Comme pour les Bactéries, il est impossible de définir les espèces sur un critère d'interfécondité. Par ailleurs, les échanges d'ADN entre individus génétiquement très distants semblent également fréquents chez ces espèces. Enfin, comme pour tous les organismes unicellulaires, leurs caractéristiques morphologiques sont à la fois limitées et extrêmement variables entre espèces génétiquement proches.

#### 1. La morphologie des Archées

Les Archées présentent une morphologie extrêmement variable : sphères, bâtonnets, plates, spirales, etc. Leur taille varie de 0,1 à 15 µm. Elles peuvent se présenter sous forme isolée, sous forme de filaments allant jusqu'à 200 µm ou encore d'agrégats. Le seul examen morphologique ne permet pas de les différencier des Bactéries. Initialement isolées dans des milieux extrêmes comme les sources hydrothermales des grands fonds marins, les milieux d'acidité, de salinité ou de températures extrêmes, elles ont été depuis isolées dans des milieux plus standards.

#### 2. La membrane des Archées

La membrane plasmique des Archées contient des acides gras liés au squelette de glycérol par des liaisons éther, contrairement à tous les autres organismes vivants chez qui cette liaison se fait par des liaisons ester. Dans la plupart des cas, également, les acides gras sont substitués par des chaînes isoprènes non ramifiées. De plus, les Archées contiennent de 1 à 95 % d'acides gras qui forment des groupements tétra-éther. Ces liaisons chimiques permettent la constitution de lipides bipolaires qui, lorsqu'ils sont présents à haute concentration, rigidifient la membrane plasmique en formant une membrane partiellement ou majoritairement monocouche (figure 1). Cette structure membranaire permet aux Archées de résister aux températures extrêmes.

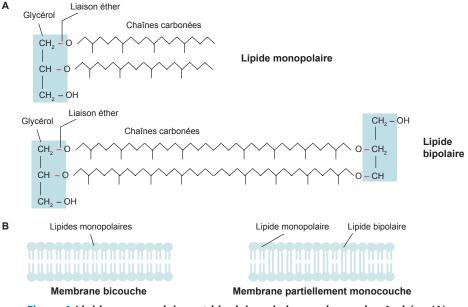



Figure 1 Lipides monopolaires et bipolaires de la membrane des Archées (A) et membrane partiellement monocouche (B)

Dunod. Toute reproduction non autorisée est un délit

#### 3. La paroi des Archées

La plupart des Archées sont entourées d'une paroi rigide et résistante qui protège l'organisme et lui donne sa forme. La couche de surface (ou *S-layer*) de la paroi est constituée d'empilements de couches monomoléculaires de polymères protéiques ou glycoprotéiques qui, à la différence des Bactéries, ne contiennent pas de peptidoglycane (figure 2A). Le plus souvent, la couche de surface est ancrée à la membrane plasmique par des résidus hydrophobes, une structure qui ne permet pas de retenir la coloration de Gram (ces Archées sont par conséquent Gram—).

Certaines Archées méthanogènes présentent un pseudopetidoglycane constitué d'une couche de surface ancrée à la membrane par de la pseudomuréine et sont alors Gram+. Ce pseudopeptidoglycane diffère du peptidoglycane des Bactéries par l'absence de D-aminoacides et d'acide N-acétylmuramique.

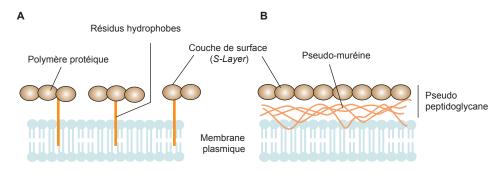



Figure 2 La paroi des Archées

A: Majorité des Archées; B: Certaines Archées méthanogènes

#### 4. Des Archées dans tous les milieux

Les Archées furent tout d'abord isolées dans des biotopes extrêmes (hyperthermique, acide, hyperhalin, etc.). Certaines furent découvertes dans des sources chaudes (parc de Yellowstone, États-Unis) comme *Thermococcus* dont la température optimale est comprise entre 55 °C et 70 °C. D'autres cumulent hyperthermophilie et acidophilie comme *Sulfolobus acidocaldarius* (température optimale : 80 – 95 °C, pH 1 à 5). De plus, comme beaucoup d'Archées hyperthermophiles, *S. acidocaldarius* est chimiolithotrophe (sulfoxydante). Elle se développe donc dans des milieux à hautes températures, forte acidité et hautes teneurs en soufre, comme en produisent les éruptions volcaniques. D'autres encore, comme *Halobacterium* ou *Haloferax* furent isolées dans des dépôts de sels (Mer morte, Jordanie/Israël ; Great Salt Lake, Utah, États-Unis) que l'on pensait jusque-là impropres à la vie.

Les Archées apparaissent aujourd'hui comme des micro-organismes très abondants dans des biotopes courants. En effet, selon des estimations récentes, elles représenteraient jusqu'à 20 % de la biomasse des milieux marins et des sols.

Les Archées jouent un rôle fondamental dans les cycles biogéochimiques, notamment celui de l'azote. Toutefois, dans les biotopes standards, elles occupent des niches où les ressources énergétiques sont limitées. Les Archées sont particulièrement résistantes au stress énergétique, que celui-ci soit dû à la rareté des ressources ou aux conditions physico-chimiques de l'écosystème. Rappelons que cette résistance semble due aux propriétés de leur membrane plasmique, et en particulier à la présence dans cette dernière de lipides bipolaires.

De façon étonnante, aucune Archée pathogène n'a été identifiée à ce jour et la seule espèce parasite, *Nanoarchaeum equitans* (0,35 μm), est un parasite d'Archées (*Ignicoccus*, 1 à 2 μm).

#### La cellule animale

fiche

Bien que toutes les cellules animales possèdent des propriétés structurales et fonctionnelles communes (membrane, cytoplasme, organites, noyau, etc.), elles diffèrent en fonction des organismes, ainsi qu'en fonction de leur spécialisation au sein d'un tissu ou d'un organe.

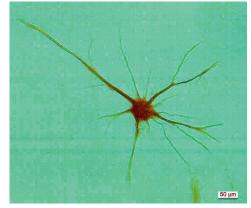



Figure 1 Neurone en culture (MO)

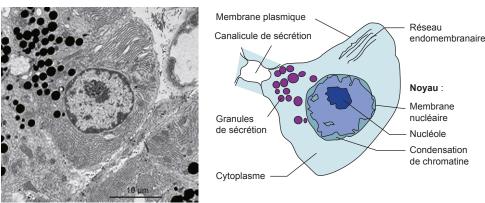



Figure 2 Cellule sécrétrice de glande salivaire de Rat (MET)

#### 1. Organisation fonctionnelle générale

Dunod. Toute reproduction non autorisée est un délit.

Comme toutes les cellules, les cellules animales possèdent une membrane limitante constituée d'une double couche de phospholipides dans lesquels sont incluses des protéines.

Le compartiment intracellulaire constitue le cytoplasme, lequel comprend (figure 2) :

- le noyau qui contient l'ADN, support de l'information génétique ;
- un réseau membranaire interne qui forme divers compartiments intracellulaires (réticulum, appareil de Golgi, etc.);
- un cytosquelette composé de microtubules, de microfilaments et de filaments intermédiaires ;
- des organites intracellulaires, les mitochondries, qui assurent la respiration cellulaire et qui proviennent d'une symbiose ancienne avec une Protéobactérie ;
- les flagelles, lorsqu'ils sont présents, présentent une structure caractéristique constituée de neuf doublets ou triplets de microtubules entourant deux microtubules centraux.

La division cellulaire, comme chez tous les Eucaryotes, se fait par mitose (et non par scissiparité comme chez les Archées et les Bactéries). Celle-ci correspond à une division conforme des cel-

Q

Fiche 140 lules, permettant d'obtenir des cellules filles identiques à la cellule mère. Elle se produit lors du développement embryonnaire et tout au long de la vie de l'organisme (figure 3).

Notons que l'alignement noyau-centrosome fournit « l'axe primaire » des cellules lors de la division cellulaire.

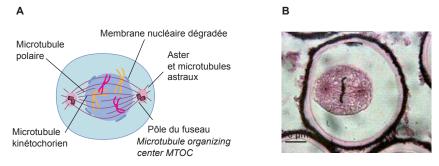



Figure 3 Fuseau mitotique (A) et cellule d'œuf d'Ascaris en métaphase (B)

Enfin, les cellules présentent une véritable sexualité pour laquelle chaque type sexuel (mâle ou femelle) contribue à égalité au patrimoine génétique de la cellule fille. Contrairement aux organismes à structure procaryote qui ne présentent que des échanges génétiques partiels entre cellules, les Eucaryotes sont capables de produire des gamètes haploïdes par méiose. Au cours de ce processus, répartis en deux divisions successives, les chromosomes d'origines paternelle et maternelle sont recombinés, brassés et séparés en deux lots qui contribuent chacun pour moitié au génome des cellules descendantes issues de la fécondation.

#### 2. La membrane plasmique

La membrane plasmique est constituée d'une double couche de phospholipides dans laquelle sont enchâssées (ou simplement fixées) des protéines ou des glycoprotéines. En fonction de leur structure, ces protéines assurent différentes fonctions : canaux (échanges), récepteurs des lymphocytes membres de la superfamille des immunoglobulines (reconnaissance), récepteurs (communication intercellulaire), protéines d'adhésion (adhérence et jonctions cellulaires).

#### 3. Le cytosol

Le cytosol est une émulsion colloïdale contenant de nombreux organites, ainsi que les éléments du cytosquelette, ayant des structures et des fonctions variées. L'ensemble cytosol et cytosquelette constitue l'hyaloplasme. Le cytoplasme désigne l'ensemble du contenu de la cellule.

Les organites sont limités soit par une simple soit par une double membrane, et ils constituent des systèmes de compartimentation anatomiques et fonctionnels intracellulaires.

La structure cellulaire est assurée par un cytosquelette plus ou moins développé, selon le type cellulaire.

Au sein de la cellule, les organites sont constamment mis en mouvement sous l'action de l'assemblage et du désassemblage de protéines « contractiles ».

#### 4. Le noyau

Le noyau contient l'ADN, support de l'information génétique, sous forme de fins filaments associés à des protéines. Il comprend une zone acidophile, le nucléole, qui correspond au lieu de la transcription de l'ADN.

Le noyau est délimité par une double membrane en relation avec le réticulum endoplasmique. Cette membrane est interrompue par des pores nucléaires au niveau desquels se font les échanges entre le milieu intranucléaire et le cytoplasme.

#### La cellule végétale

Les Archéoplastidés, ou lignée verte, sont des organismes dont les cellules contiennent, en plus des organites des cellules animales, une paroi pecto-cellulosique, des plastes et un réseau de vacuoles.

#### 1. Organisation générale de la cellule végétale

L'organisation du cytoplasme de la cellule végétale est du type eucaryote. Il est cependant très limité et réparti sur le pourtour de la cellule, la région centrale de la cellule formant des travées vacuolaires. Il inclut (figure 1) :

- un noyau, souvent déporté sur le côté et plaqué contre la membrane plasmique ;
- divers organites qui composent le système endomembranaire (réticulum, dictyosome, vésicules) ;
- des chloroplastes et des mitochondries ;
- une vacuole qui occupe l'essentiel de la cellule.

Par comparaison aux cellules animales, il faut noter l'absence de lysosomes et d'un véritable centrosome. Il existe également, dans le cytoplasme, des filaments d'actine et des filaments intermédiaires. Ces structures participent principalement à la dynamique interne des organites et aux divisions cellulaires, la fonction d'endocytosquelette hydrostatique étant essentiellement dévolue à la vacuole.

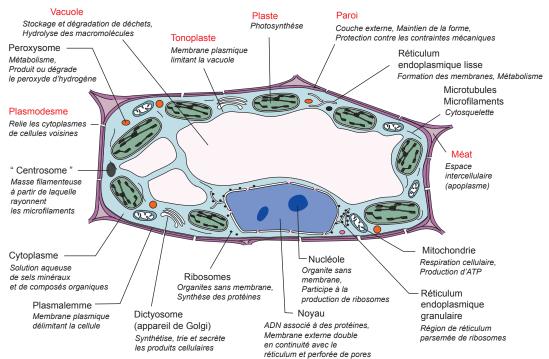



Figure 1 Cellule d'Embryophyte

Les éléments légendés en rouge sont spécifiques des cellules végétales

#### 2. La paroi

La cellule des Embryophytes est entourée d'une matrice extracellulaire de composition pectocellulosique, la paroi, et est éventuellement spécialisée par l'enrichissement en autres constituants (polyphénol, cires, etc.). Cette paroi joue le rôle d'exosquelette et permet également la cohésion des tissus. Sa présence définit un continuum extracellulaire, l'apoplasme, dans lequel l'eau et les solutés peuvent circuler par diffusion passive (voie apoplasmique). Q

hapitre 1

La paroi primaire, formée très tôt lors de la division de la cellule mère, est capable de s'agrandir sous la pression de turgescence lors de l'auxèse. Une fois la croissance terminée, la paroi secondaire est alors formée par addition de couches successives de cellulose disposées en strates entrecroisées.

La résistance de la paroi est due à la présence de microfibrilles de cellulose insérées dans un ciment pectique et hémicellulosique associé à des protéines pariétales. Dans le cas du xylème, du sclérenchyme et du bois, de la lignine est ajoutée à cet ensemble moléculaire, lui conférant imperméabilité et rigidité. Par cette dernière propriété, la présence de la paroi empêche donc toute migration cellulaire.

La paroi comprend de nombreux « pores » permettant la communication entre deux cellules voisines : les plasmodesmes. Chaque plasmodesme est bordé d'une membrane en continuité avec les membranes plasmiques (ou plasmalemme) des cellules voisines. Au centre du plasmodesme, un canal membranaire interne, le desmotube, relie le réticulum endoplasmique des deux cellules connectées (figure 2).

L'ensemble des cytoplasmes connectés forme le symplasme. Celui-ci permet la circulation de molécules par des transports passifs, constituant

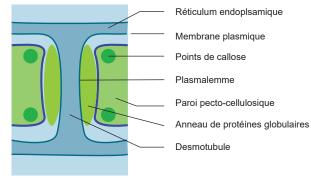
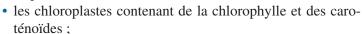




Figure 2 Plasmodesme

une voie d'échanges intercellulaires, la voie symplasmique, complémentaire de la voie apoplasmique.

#### 3. Les plastes

Chez les Embryophytes, les plastes (figure 3) sont subdivisés en général en trois types, convertibles entre eux (interconversion plastidiale):



- les chromoplastes contenant une grande quantité de caroténoïdes;
- les leucoplastes, dépourvus de pigments et assurant le stockage de protéines dans les protéoplastes, de lipides dans les oléoplastes, ou de glucides dans les amyloplastes.

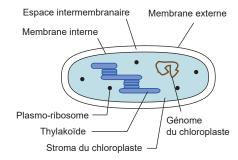



Figure 3 Organisation anatomique de plaste (exemple du chloroplaste)

Tout plaste provient d'un plaste déjà existant. Il ne peut y avoir formation de plaste *ex nihilo*. Cependant, les chloroplastes peuvent se diviser et donner de nouveaux organites photosynthétiques.

#### 4. La vacuole

L'appareil vacuolaire se présente sous la forme de petites vacuoles isolées dans les jeunes cellules et sous la forme d'une grande vacuole unique dans les cellules différenciées.

La vacuole se forme à partir de vésicules qui, après s'être détachées du réseau transgolgien, fusionnent en un grand compartiment délimité par le tonoplaste et contenant du suc vacuolaire.

Les vacuoles possèdent de nombreuses fonctions :

- elles participent au port de la plante terrestre en formant un squelette hydrostatique grâce aux échanges ioniques et hydriques responsables de la turgescence ;
- elles contiennent des réserves (glucides, protéines, parfums, alcaloïdes tels que l'opium, etc.) et des pigments (anthocyanes, etc.) ;
- elles contiennent des enzymes hydrolytiques identiques à ceux des lysosomes;
- elles ont une fonction homéostatique par échanges avec le cytoplasme ;
- elles assurent l'accroissement cellulaire par des phénomènes de turgescence lors de l'auxèse.