Table des matières

Préface ................................................................. xv
Introduction ......................................................... xvii
Contributeurs ....................................................... xix
Principaux symboles et constantes physiques ........... xxiii
Abréviations ......................................................... xxv
Principales phases cristallines abordées dans cet ouvrage .............................................. xxix

Chapitre 1 : La théorie classique de la nucléation

1.1. De la dévitrification................................................. 2
1.2. ... Aux origines de la CNT ........................................ 3
1.3. Nucléation homogène .............................................. 4
   1.3.1. Considérations thermodynamiques ...................... 4
   1.3.2. Considérations cinétiques ................................. 7
   1.3.3. Taux de nucléation ...................................... 8
   1.3.4. Exemples de verres avec nucléation homogène ...... 9
1.4. Nucléation hétérogène ........................................... 10
1.5. Temps d'induction ............................................... 13
1.6. Croissance cristalline .......................................... 15
   1.6.1. Taux de croissance cristalline ......................... 15
   1.6.2. Morphologie cristalline ................................ 17
Chapitre 2 : Au-delà de la théorie classique de la nucléation

2.1. Dynamique d'amas ........................................... 25
2.2. Fonctionnelle de la densité ................................. 27
2.3. Validité de la relation de Stokes-Einstein ? ............ 29
2.4. Modèles de germe non classique ............................ 29
   2.4.1. Introduction d'une surface fractale. .................. 30
   2.4.2. Théorie de l'interface diffuse (DIT) ................. 31
   2.4.3. Observations expérimentales des germes critiques ? 32
2.5. Système désordonné non-homogène ......................... 33
   2.5.1. Théorie de la nucléation dans des systèmes avec un désordre statique local .......................... 33
   2.5.2. Observations expérimentales récentes ................ 35
2.6. Approche généralisée de Gibbs ............................ 36
   2.6.1. Description théorique simplifiée. ..................... 37
   2.6.2. Implications pour la nucléation/croissance .......... 40
   2.6.3. Observations expérimentales de nucléation métastable ........................................ 41
2.7. Modèle à deux-étapes ....................................... 44
   2.7.1. Description du modèle à deux-étapes .............. 44
   2.7.2. Observations expérimentales .......................... 47
2.8. Conclusions ................................................. 47

Chapitre 3 : Stabilité thermodynamique et cinétique globale de transformation

3.1. Stabilité et instabilité thermodynamique dans un système vitreux .... 49
   3.1.1. Stabilité et postulats de la thermodynamique [117] ........ 50
   3.1.2. Condition de stabilité – Retour à l'équilibre ........ 52
   3.1.3. Description thermodynamique de la transition vitreuse .... 58
3.2. Approche phénoménologique de la cinétique de transformation .... 66
   3.2.1. Transformation par germination et croissance – vitesses constantes .... 67
   3.2.2. Transformation par germination et croissance – vitesse de croissance constante, vitesse de germination dépendante du temps ... 70
### Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3.</td>
<td>Forme générale de l'équation cinétique</td>
<td>71</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>En pratique...</td>
<td>71</td>
</tr>
<tr>
<td>3.3.</td>
<td>Conclusion</td>
<td>75</td>
</tr>
</tbody>
</table>

### Chapitre 4 : Processus de démixtion dans les verres

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>4.2.</td>
<td>Description thermodynamique de la séparation de phase</td>
<td>78</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Notion de solubilité dans les solutions idéales</td>
<td>78</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Immiscibilité dans les solutions régulières</td>
<td>79</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Description des domaines d'immiscibilité dans les verres</td>
<td>82</td>
</tr>
<tr>
<td>4.3.</td>
<td>Cinétique de la démixtion</td>
<td>88</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Influence du mode de diffusion</td>
<td>88</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Cinétique de la démixtion par nucléation croissance</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>Décomposition spinodale – Approche de Cahn et Hilliard</td>
<td>89</td>
</tr>
<tr>
<td>4.4.</td>
<td>Influence de la structure des verres sur la tendance à la démixtion</td>
<td>91</td>
</tr>
<tr>
<td>4.4.1.</td>
<td>Modèles structuraux – systèmes binaires silicatés et boratés</td>
<td>91</td>
</tr>
<tr>
<td>4.4.2.</td>
<td>Influence de l'ajout d'élément sur la démixtion</td>
<td>96</td>
</tr>
<tr>
<td>4.4.3.</td>
<td>Les outils de caractérisation structurale</td>
<td>98</td>
</tr>
<tr>
<td>4.5.</td>
<td>Caractérisation de la démixtion</td>
<td>98</td>
</tr>
<tr>
<td>4.5.1.</td>
<td>Étude de la démixtion métastable</td>
<td>99</td>
</tr>
<tr>
<td>4.5.2.</td>
<td>Étude de la démixtion stable qui se prolonge dans le domaine métastable</td>
<td>99</td>
</tr>
<tr>
<td>4.5.3.</td>
<td>Exemple de mode de démixtion</td>
<td>102</td>
</tr>
</tbody>
</table>

### Chapitre 5 : Approche cristallochimique des principales phases cristallines observées dans les vitrocéramiques

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>5.2.</td>
<td>Les phases cristallines silicatées</td>
<td>108</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Généralités</td>
<td>108</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Les six familles de silicates</td>
<td>110</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Les polymorphes de la silice</td>
<td>118</td>
</tr>
<tr>
<td>5.3.</td>
<td>Les phosphates</td>
<td>123</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Conséquence de la pentavalence du phosphore</td>
<td>123</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Les familles de phosphates</td>
<td>123</td>
</tr>
<tr>
<td>5.3.3.</td>
<td>Précipitation de cristaux non-phosphates à partir de verres de phosphates</td>
<td>131</td>
</tr>
</tbody>
</table>

Matériel protégé par le droit d'auteur
Chapitre 6 : Élaboration et contrôle de la microstructure des vitrocéramiques

6.1. Enjeux de la maîtrise de la microstructure dans les vitrocéramiques

6.2. Paramètres contrôlables

6.2.1. Composition du verre parent

6.2.2. Mécanisme de nucléation/croissance

6.2.3. Traitement thermique

6.3. Procédés d'élaboration

6.3.1. Méthodes classiques

6.3.2. Nouveaux procédés d'élaboration

6.4. Méthodes de caractérisation

6.4.1. L'analyse thermique (chapitre 8)

6.4.2. La diffraction sur poudre (chapitres 7, 10 et 13)

6.4.3. Les microscopies (chapitre 9)

6.4.4. Les spectroscopies (chapitres 11, 12 et 13)

6.5. Types de microstructure

6.5.1. Microstructures sphéroïdales

6.5.2. Microstructures en aiguilles

6.6. Conception de vitrocéramiques à propriétés désirées par contrôle des mécanismes de cristallisation

6.6.1. Nucléation en volume

6.6.2. Nucléation de surface

6.6.3. Double nucléation

6.7. Perspectives

Chapitre 7 : Diffraction des rayons X et vitrocéramiques

7.1. Rappels

7.1.1. Interactions RX/matière.

7.1.2. Diffusion par un atome

7.1.3. Loi de Bragg

7.1.4. Réseau réciproque et diffraction

7.1.5. Intensité diffractée et termes correctifs

7.1.6. Profils des pics de Bragg
### Chapitre 8 : Calorimétrie et analyse thermique différentielle pour l'étude des verres

8.1. Quelles méthodes calorimétriques pour étudier les propriétés thermiques d'un verre ? ........................................... 185
   8.1.1. Classification des méthodes calorimétriques .................. 186
   8.1.2. Quels moyens disponibles à haute température ? .. 189

8.2. Analyse thermique différentielle ........................................... 192
   8.2.1. Principe de mesure ........................................... 192
   8.2.2. Analyse thermique différentielle quantitative : étalonnage 193
   8.2.3. Cas particulier : méthode incrémentale (ISO 11357-4) .... 198
   8.2.4. Analyse calorimétrique différentielle à balayage à température modulée ........................................... 199
   8.2.5. Exploitation en refroidissement ............................... 200
   8.2.6. Conseils pratiques ........................................... 200

8.3. Explorer l'état surfondu d'un verre par ATD .... 201
   8.3.1. Transition vitreuse ........................................... 201
   8.3.2. La cristallisation, un événement exothermique ........ 203

8.4. Conclusion .......................................................... 208

### Chapitre 9 : Microscopie électronique appliquée à l'étude de la nucléation et de la cristallisation dans les verres

9.1. Microscopie électronique à balayage ................................. 211
9.2. Microscopie électronique en transmission ......................... 212
   9.2.1. Principe ................................................... 212
   9.2.2. Techniques d'imageries MET .................................... 214
   9.2.3. STEM-HAADF ............................................. 219

Matériel protégé par le droit d'auteur
Chapitre 10 : Diffusion aux petits angles des rayons X et des neutrons

10.1. Introduction ................................................. 233

10.2. Diffusion des rayons X et des neutrons : spécificités et complémentarité ........................................ 233

10.2.1. Diffusion aux petits angles et diffraction ........... 234

10.2.2. Ordres de grandeurs ...................................... 234

10.2.3. Montages expérimentaux ...................................... 235

10.2.4. Préparation des échantillons ...................................... 235

10.3. Distances et phénomènes sondés .......................... 236

10.3.1. Fluctuations de densité thermiques .................. 237

10.3.2. Fluctuations de concentration thermiques .......... 237

10.3.3. Fluctuations supercritiques .......................... 237

10.4. Notions de base pour la diffusion aux petits angles .... 238

10.4.1. Le facteur de forme $P(Q)$ ................................. 238

10.4.2. Le facteur de structure $S(Q)$ ................................. 240

10.5. Analyse des données ............................................. 241

10.6. Exemples d'applications ............................................. 245

10.6.1. Exemple d'une séparation de phase liquide-liquide dans un verre contenant du molybdène .................. 245

10.6.2. Autres exemples d'étude de la séparation de phase ........ 248

10.6.3. Application des méthodes SANS et SAXS à l'étude de la nucléation ............................................. 249

10.6.4. Exemple d'études de nucléation et cristallisation dans un verre par SANS ............................................. 250

10.6.5. Nucléation et cristallisation dans un verre de cordierite par SAXS ............................................. 251

10.7. Conclusion ......................................................... 252
### Chapitre 11 : La résonance magnétique nucléaire : un outil pour comprendre le désordre et la cristallisation dans les matériaux vitreux

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>11.2</td>
<td>Les principes de base de la RMN</td>
<td>258</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Les interactions en RMN : une signature de l'environnement local</td>
<td>258</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Les outils de la RMN du solide haute résolution</td>
<td>259</td>
</tr>
<tr>
<td>11.3</td>
<td>Signature spectrale du désordre en RMN et sa résolution</td>
<td>263</td>
</tr>
<tr>
<td>11.3.1</td>
<td>RMN des systèmes désordonnés</td>
<td>263</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Couplage RMN et modélisation atomistique</td>
<td>267</td>
</tr>
<tr>
<td>11.4</td>
<td>Application à la cristallisation</td>
<td>269</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusion</td>
<td>275</td>
</tr>
</tbody>
</table>

### Chapitre 12 : La spectrométrie Raman : un outil de choix pour l'étude des mécanismes de nucléation et de croissance cristalline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>12.2</td>
<td>Principe de la spectrométrie Raman</td>
<td>284</td>
</tr>
<tr>
<td>12.3</td>
<td>Instrumentation et analyse</td>
<td>286</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Spectromètre Hololab 5000</td>
<td>286</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Le spectromètre T64000 et le système confocal</td>
<td>287</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Volume d'échantillonnage</td>
<td>288</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Intensité des spectres Raman</td>
<td>289</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Corps noir et capacité à faire des mesures in situ à hautes températures</td>
<td>289</td>
</tr>
<tr>
<td>12.3.6</td>
<td>Correction de l'effet de la température et de la longueur d'onde excitatrice</td>
<td>291</td>
</tr>
<tr>
<td>12.4</td>
<td>Divers exemples d'étude</td>
<td>291</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Identification des phases et nucléation dans le système CaO-Al₂O₃-SiO₂, CAS</td>
<td>292</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Mesures ex situ d'une cristallisation de silico apatite dans une matrice borosilicatée</td>
<td>292</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Étude in situ de la cristallisation de silico-apatite dans une matrice borosilicatée</td>
<td>299</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Cristallisation induite par impact laser dans un verre de GeO₂</td>
<td>300</td>
</tr>
</tbody>
</table>
12.4.5. Démixtion du molybdène dans un verre borosilicaté .................................................. 301
12.5. Avantages et inconvénients ............................................................................................ 303

Chapitre 13 : Grands instruments, vers des approches in situ de la cristallisation

13.1. L'absorption des rayons X. ....................................................................................... 311
  13.1.1. Principes .............................................................................................................. 311
  13.1.2. Applications et résultats ...................................................................................... 312
13.2. Diffraction des rayons X et des neutrons .................................................................. 315
13.3. Fours non-conventionnels adaptés sur grands instruments ........................................ 317
  13.3.1. La lévitation aérodynamique .............................................................................. 318
  13.3.2. Le micro-four (fil chauffant) .............................................................................. 318
13.4. Conclusion .................................................................................................................. 320

Chapitre 14 : Les applications commerciales des vitrocéramiques

14.1. Introduction .............................................................................................................. 327
14.2. Microstructure et formation des vitrocéramiques ......................................................... 327
  14.2.1. Microstructure ...................................................................................................... 327
  14.2.2. Formation des vitrocéramiques par nucléation et croissance de cristaux. .......... 329
14.3. Propriétés des vitrocéramiques ............................................................................... 332
14.4. Applications des vitrocéramiques ............................................................................ 333
  14.4.1. Vitrocéramiques transparentes à faible dilatation ............................................ 334
  14.4.2. Autres vitrocéramiques transparentes ............................................................. 336
  14.4.3. Vitrocéramiques usinables ............................................................................... 337
14.5. Conclusion .................................................................................................................. 340

Chapitre 15 : Biomatiériaux en verre et vitrocéramiques

15.1. Introduction .............................................................................................................. 341
15.2. Applications dentaires ............................................................................................. 342
Chapitre 16 : Coloration par des nanoparticules métalliques

16.1. Introduction ......................................................... 351
16.2. Plasmons de surface dans les colloidés métalliques ........................................ 352
16.3. Verres rubis à l’or et rouges de cuivre ........................................ 359
   16.3.1. Verres rubis à l’or ........................................ 359
   16.3.2. Rouges de cuivre ........................................ 361
16.4. Les céramiques lustrées ........................................ 364
16.5. Conclusion ............................................................ 368

Chapitre 17 : Vitrocéramiques transparentes

17.1. Intérêt des vitrocéramiques transparentes ........................................ 371
17.2. Transparence dans les vitrocéramiques ........................................ 372
   17.2.1. Principe général ........................................ 372
   17.2.2. Diffusion de la lumière dans les vitrocéramiques transparentes ........ 372
   17.2.3. Synthèse de vitrocéramiques transparentes ........................................ 374
   17.2.4. Cas particulier : l’opalescence ........................................ 375
17.3. Propriétés et applications ........................................ 376
   17.3.1. Vitrocéramiques transparentes à base d’oxydes ......................... 377
   17.3.2. Vitrocéramiques transparentes à base de fluorures/d’oxyfluorures ... 381
   17.3.3. Vitrocéramiques transparentes à base de chalcogénures ............... 383
17.4. Perspectives ............................................................. 385
Chapitre 18 : Formation et applications des nanoparticules dans les fibres optiques à base de silice

18.1. Pourquoi développer des fibres optiques contenant des nanoparticules ? ........................................ 387
18.1.1. Généralités sur les fibres optiques ................................. 387
18.1.2. Des nanoparticules pour des fibres « augmentées » .... 389
18.2. Contraintes sur les caractéristiques des particules .......... 390
18.3. Procédés de fabrication des fibres optiques vitrocéramiques ... 391
   18.3.1. Procédé « Rod-in-tube » ........................................... 391
   18.3.2. Procédé « double-creuset » ...................................... 392
   18.3.3. Procédé MCVD, dopage par solution et étirage .......... 392
   18.3.4. Procédé sol-gel ..................................................... 393
   18.3.5. Traitement thermique supplémentaire et intégration des nanoparticules ............................................. 393
18.4. Applications des fibres optiques vitrocéramiques ........... 394
   18.4.1. Encapsulation des ions luminescents dans des nanoparticules ......................................................... 395
   18.4.2. Nanoparticules métalliques ..................................... 397
18.5. Conclusion .................................................................. 398

Chapitre 19 : Les vitrocéramiques pour l'optique non linéaire et l'optique non linéaire pour les vitrocéramiques

19.1. Introduction .................................................................. 399
19.2. Grandeurs et phénomènes optiques non linéaires ............ 400
   19.2.1. Non linéarité d'ordre deux ....................................... 400
   19.2.2. Non linéarité d'ordre trois ....................................... 401
19.3. Vitrocéramiques pour l'optique non-linéaire .................. 402
   19.3.1. Non linéarité du deuxième ordre et génération de second harmonique ..................................................... 402
   19.3.2. Non linéarité de troisième ordre et absorption saturable ................................................................. 407
19.4. Optique non-linéaire et fabrication de matériaux vitrocéramiques ......................................................... 409
   19.4.1. Les agrégats métalliques et particules métalliques ....... 412
   19.4.2. Transition de phase initiée par laser femtoseconde .... 413
19.5. Conclusion .................................................................. 414
Chapitre 20 : Micro et nanocristallisation orientée par laser pour induire des propriétés optiques non-linéaires

20.1. Introduction ........................................... 415
20.2. Méthodes de préparation pour former localement des cristaux orientés présentant des propriétés optiques non linéaires .......... 418
20.3. Cristallisation orientée pour l'optique non-linéaire dans diverses familles de verres au moyen d'irradiation laser .................. 421
   20.3.1. Croissance orientée de cristaux de LiNbO₃ dans des matériaux vitreux ........................................ 421
   20.3.2. Croissance orientée de cristaux de Ba₂Ti(Ge,Si)₂O₈ dans des matériaux vitreux .............................. 423
   20.3.3. Croissance orientée de cristaux de LaBGeO₅ dans des matériaux vitreux ........................................ 423
   20.3.4. Croissance orientée de cristaux de β-BBO dans des matériaux vitreux ........................................ 424
20.4. Conclusion ............................................. 426

Chapitre 21 : Vitrocéramiques oxyfluorées

21.1. Introduction ........................................... 429
21.2. Synthèse de vitrocéramiques oxyfluorées ................................. 430
21.3. Genèse, tailles et morphologies des particules fluorées au sein de la matrice vitreuse en fonction de la terre rare ............... 431
21.4. Cristallinité et taille des particules fluorées en fonction de la durée du traitement thermique ................................. 436
21.5. Contrainte induite par la matrice vitreuse et paramètre de maille de la phase cristallisée ........................................ 437
21.6. Propriétés optiques ..................................... 439
21.7. Conclusions et perspectives ................................ 440

Chapitre 22 : Nucléation, cristallisation et séparation de phases dans les verres de chalcogénures

22.1. Introduction ........................................... 441
22.2. Vitrocéramiques chalcogénures pour l'optique infrarouge ........... 442
Chapitre 22 : Vitrocéramiques pour l'optique non linéaire

22.2.1. Vitroceramiques pour l'optique non linéaire ........................................ 443
22.3. Amélioration des propriétés mécaniques .................................................. 444
  22.3.1. Augmentation des rendements de luminescence .................................... 446
22.4. Les tellurures à changement de phase : des matériaux remarquables
  pour le stockage de l'information .................................................................... 448
22.5. Les chalcogénures conducteurs ioniques : rôle de la séparation
  de phase et de la cristallisation partielle sur les propriétés
  électriques ........................................................................................................ 451
  22.5.1. Vitrocéramiques chalcogénures pour le stockage électrochimique
       de l'énergie .................................................................................................. 451
  22.5.2. Les verres de chalcogénures photosensibles, résines potentielles
       de résolution submicronique ....................................................................... 453
  22.5.3. Les verres de chalcogénures matériaux prometteurs pour le
       développement de mémoires ioniques ....................................................... 454
22.6. Conclusion .................................................................................................... 457

Chapitre 23 : Vitrocéramiques pour le
confinement de déchets

23.1. Introduction .................................................................................................. 459
23.2. Les matrices vitrocéramiques de confinement pour déchets
  hautement radioactifs ...................................................................................... 461
  23.2.1. Nature et origine des déchets hautement radioactifs. Objectifs
         du confinement ............................................................................................ 461
  23.2.2. Les matrices vitrocéramiques de confinement pour déchets non
         séparés ....................................................................................................... 464
  23.2.3. Les vitrocéramiques de confinement spécifique .................................... 473
23.3. Les matrices vitrocéramiques de confinement pour déchets toxiques
  et dangereux non radioactifs ......................................................................... 480
  23.3.1. Les déchets toxiques ou dangereux non-radioactifs : des origines
         et des compositions variées ..................................................................... 480
  23.3.2. Vitrification et vitrocéramisation des déchets non-radioactifs ............. 480
23.4. Conclusion .................................................................................................. 486

Chapitre 24 : Émaux cristallins

24.1. De la céramique traditionnelle à la formulation des glaçures .......... 487
24.2. De la découverte du rôle du zinc ............................................................... 489
24.3. Autres compositions cristallines pour émaux mats ............................ 496
24.4. Autres exemples de cristallisations contrôlées .......................... 498
24.5. Conclusion ........................................................................... 499

Chapitre 25 : Bibliographie

Index ......................................................................................... 579